If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6y^2-30=0
a = 6; b = 0; c = -30;
Δ = b2-4ac
Δ = 02-4·6·(-30)
Δ = 720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{720}=\sqrt{144*5}=\sqrt{144}*\sqrt{5}=12\sqrt{5}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{5}}{2*6}=\frac{0-12\sqrt{5}}{12} =-\frac{12\sqrt{5}}{12} =-\sqrt{5} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{5}}{2*6}=\frac{0+12\sqrt{5}}{12} =\frac{12\sqrt{5}}{12} =\sqrt{5} $
| 7(x+1)-1=34-2x | | 44aX4=64 | | 6n+10=-3n+-17 | | 9a+6=8a+17 | | 29x-29=29x-11 | | 3x10=7 | | -7/10=3a4-13/20 | | j/7=-19 | | 6n+10=-3n+17 | | 2(x-6)+2=4x=4 | | (n+1)(n-3)=32 | | 7(2l+1)=63 | | 4(x– 2)– 10x=-40 | | 13-42=4(x-1)-5 | | k+12=82 | | 10+x=5x-13 | | x+9x-5=15 | | =2w−364w | | 1/4=x10 | | =−4−3x145 | | 60+70h=80h | | 8=1+2n+1 | | .6x=413000 | | 2j+1.7j=16.7 | | 6d+23=14(d−2) | | 1=-1/3x-5/3 | | 343n^2-28=0 | | 3m-2+8=44 | | 12x-42=7x+38 | | 42=3q | | 8+.14285714x=9 | | 3x=50-2 |